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CONVENTIONS

Throughout these lectures, we mean by a ring a ring with

unit element 1 (or 1' as the case may be), and also by a homomor-

phism of such rings a homomorphism which maps unit upon unit.

A will always denote a ring which is quite arbitrary in Chap. I, and

assumed to be commutative in Chap. II and the subsequent chapters.

By a module over A, we invariably mean a unitary module.

Thus a module over A is a set M such that

1) M has a structure of an additive group,

2) for every a e A and x e M, an element ax eM called scalar

multiple is defined and we have

ii)

iii)

iv) !*=*.
A map of a module over A into a module over A is called linear,

if it is a homomorphism of the underlying additive groups which

commutes with every scalar multiplication by every element of A
An algebra E over A means a module over A with an associa-

tive multiplication which makes E a ring satisfying

a(xy)=(ax)y=x(ay') (x,yeE; aeA).

A homomorphism of algebras will always mean a ring homomor-

phism which maps unit upon unit. An ideal of an algebra means

always a two-sided ideal. A subset S of an algebra is called a set

of generators of E if E is the smallest subalgebra containing S and

the unit 1 of E.

In dealing with modules or algebras over A t any element of the

basic ring A is often called a scalar. In the case of algebras, any

element of the subalgebra A 1 is called a scalar ; a scalar clearly

commutes with every element of the algebra.

VI



CHAPTER I. GRADED ALGEBRAS.

1. Free algebras. The first basic type of algebras we want

to consider is the free algebra. Let E be an algebra over A gene-

rated by a given set of generators (Xi\ ( i (/: any set of indices). Let

cr=(/i, ,//*) be a finite sequence of elements of / and put y<r
=

Xi^- Xih
. The number h is called the length of a. Among the

"
finite

sequences
" we always admit the empty sequence OQ, whose length is

0, i.e., a sequence with no term, and we put >>,= L We define the

composition of two finite sequences <7=0*i, ,ih) and <r
f

=(j\ t ,jk) by

aaf
C/i, jih,j\,

'

', /&) For CTO ,
we define oo<r O-OTO <r, i.e., <TO is the

unit for this composition. Evidently this composition is associative:

(0V) a"a((jt

(T"\ and we have yffvtyvya t.

THEOREM 1.1. Every element of E is a linear combination of the

y<r 's, cr running over all finite sequences of elements of I.

PROOF. Denote by E\ the module spanned by all the >v's. We
shall show EE\. First we prove:

LEMMA 1.1. E\ is closed under multiplication.

PROOF, Let z, z' be two elements of El and put

Though these two sums seem apparently infinite, we have in fact

0<r=0 and 0^0 except for a finite number of <r's. Then we have

zzf=
<r

the sum being finite, we have zz
r 6 E.

Now we return to the proof of Theorem 1.1. The module EI is

thus a subalgebra of E, and if <r=(i) 3V=#i and also ^=1. There-

fore EI, containing the set of generators (xi) and 1, contains E itself,

so that we obtain E=Ei, which proves the theorem.

DEFINITION 1.1. // the yff 's are linearly independent over A, then

E is called a free algebra, and the set (Xi\ t i is called a free system

of generators of E.
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Existence and uniqueness of free algebras. We first prove

the uniqueness. For this, we shall show a more precise condition

called
"
universality ". An algebra F over A with a system of

generators (#f-)ie/ is called universal, if given any algebra E over A
generated by a set of elements (f,0*e/ indexed by the same set /,

there is a unique homomorphism (p:F~+E such that gj(xfi
=

, for

all /.

THEOREM 1.2. A free algebra F with its free system of generators

is universal.

PROOF. By definition, the set {y^Xi^ %} forms a base of F
as a module over A. Thus there is a linear mapping cp : F-+E such

that

(1) <p(y<r^h //,
for every <r=(ii f -, /;,) .

If a (/lf ,//,), o-'(/i, -,./) are two finite sequences of /, we have

(2)

This proves that <p is not only linear, but also a homomorphism

F~>E. Especially putting cr=(z) resp. a crc ,
we have <>(#iO i

and </>(!) 1, which prove our assertion.

Remark that, in general, any homomorphism q> is uniquely deter-

mined when the values <p(X{) on a set of generators (#,) are given.

COROLLARY. The free algebra generated by (*,)* e / is unique

under isomorphism. More precisely, let Fy F' be two free algebras

with free systems of generators (#i')i e / OyVe/' respectively, and let

I and F be equipotcnt. Then F and Ff are isomorphic.

PROOF. We may assume that /=/;
. By Theorem 1.2, we have

two homomorphisms

<p : F-+F* such that 9>(#i)=#

and

<p
f

: F-+F such that <?'(%( )-Xi

The composite mapping (p
1 o ^i> : F-*F-*F maps each X{ to itself,

1) 9' 09 is defined by ?' o <
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and by the uniqueness of homornorphism, <//
o
<p must be the identity

in F. Similarly <p
o

g>' is the identity in F'. Therefore cp is an iso-

morphism and (p'~(p~
l which proves that F and Ff are isomorphic

to each other.

Now we shall prove the existence of a free algebra, having any

given set (#i)ic/ as its free system of generators. Let 2J be the set

of all finite sequences of elements of 7. From the theory of linear

algebra, we may assume that there exists a module M over A with

a base equipotent to A'. Let O><r)<rei' be the base of M; we

introduce a srructure of algebra into M. For this, we have only to

define an associative multiplication for the elements of the base.

We define it by

y<ry<r'y<,<T> .

Since the composition in -I
1

is associative, we have the associativity :

(y<r y<r '}y<," ::=y<r(y<r>ya'>}. M is now a free algebra over A having

the free system of generators (#j),- e /.

2. Graded algebras. Let F be the free algebra with the free

system of generators (#i), /, and put yff ==#,, ~-Xih O= (/i, , &)) We
shall classify the elements y* by the length of a-.

Let Fh be the module spanned by the jv 's, a- being of length //.

Then F is the direct sum of F , FI, F2 ,
as a module:

(1) F
and evidently

(2)

because the length of the composite a<r f of or and o-' is equal to the

sum of the lengths of <r and 0'.

The free algebra F F +FH HFi+ is a typical example of

the following general notion of graded algebras.

DEFINITION 1.2. Let F be an additive group. A F-graded al-

gebra is an algebra E tvhich is given together with a direct sum

decomposition as a module

(3)
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tvhere the E-i 's are submodules of E, in such a ivay that

(4) Ef Ey (= Ef+r , i. e. y xzEi and xf e Ey imply xxf e EI+ Y / .

By a homomorphism of F-graded algebra E~ V]
*

Y into another
YeT

F-graded algebra Er ^]E' is meant a homomorphism (p : E-+E'

of the algebras such that (p(Et

In a /^-graded algebra E 2 E^ an element belonging to Ef is

called homogeneous of degree 7. The zero element of E is homo-

geneous of any degree, but each element of E other than is

homogeneous of at most one degree y 6 /\ Any element x of E is

uniquely decomposed into the sum of homogeneous elements

(5) *
Ycf

where the x-i 's are except for a finite number of 7 's. Each #y in

(5) is called the 7-component of x
LEMMA 1.2. 77? ww# 1 is always homogeneous of degree

(0 : zero element of F).

PROOF. Decompose 1 into the sum of its homogeneous compo-

nents :

1=

If xpeE is homogeneous of degree 0eF, then we have

Eft B x? =xp - 1 XI x^e-t.
Y

Since xp*eieEp+t 9 we must have xveo=xp and xp-ei=Q for all

7 4= # This implies that ^ is a right unit element for all homo-

geneous elements, and accordingly for all elements #=2 x-i in E.

Thus =1, and our assertion is proved.

COROLLARY. Scalars are homogeneous of degree 6 (6 : zero ele-

ment of F).

Among others, the following two special types of F-gradations

are of much importance :

i) /^-gradations where F=Z is the additive group of integers.

In this case, we say simply
"
graded

"
instead of

"
Z-graded ".
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ii) F-gradations where F is the group with two elements and

1. In this case we write E=E++E- in place of E~E^+Ei, and E
is called semi-graded.

A free algebra /*==F +F1+ +Fh + can be considered as a

graded algebra with Fh={0} for all h < 0.

REMARK. A /^-graded algebra is not a special kind of algebras.

In fact, any algebra may be considered as a /
T

-graded algebra with

degree for every element.

Homogeneous subalgebras.

DEFINITION 1.3. A sttbmodule M of a F-graded algebra E=--^Ei

is said to be homogeneous if the homogeneous components of any

element of M still belong to M. This is equivalent to the condition

that M=^ (M n #y )

y

THEOREM 1.3. If a submodule M or an ideal 91 of a r-graded

algebra E is generated by
2) homogeneous elements, then it is homo-

geneous.

PROOF. Let M be a submodule of E spanned by a set S of

homogeneous elements and let M' be the set of elements of M whose

homogeneous components belong to M. It is evident that 5 c M'd M.

since S consists of homogeneous elements. We shall show that Mr

is a submodule. If x=S %v and xf=T> x^ are in Mf

, then xx'=

SOyitfy), and Xix^eM, so that we have xxf eM'. Also for

a e A, we have similarly ax e M'. Thus Mf

being a submodule

containing the generators S, we have Mf n> M, and so M=Mf

,
which

proves that M is homogeneous.

For the case of ideals, we take the ideal 91 generated by a set

S of homogeneous elements. 51 is spanned, as a module, by all ele-

ments of the form x sy, where x e E, s e S and y 6 E. Putting #~S fy ,

JV=2^, we have

2) The word "
generated by

"
has somewhat different meaning for the

cases of submodules and of ideals. In the former casa, a submodule M is

generated by S if every element of M is a linear combination of the elements-

of S, while in the latter case, an ideal SI is generated by S if SI is the smallest

ideal containing the set S.
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and since (Xysyp) is homogeneous, $1 is also spanned by the elements

x-isyp which are homogeneous. Thus 91, being generated as a module

by homogeneous elements, is homogeneous as was seen above.

Let E~ v; /?Y be a /"'-graded algebra and W a homogeneous

ideal in E. We have the direct sum decomposition of 51 into its

homogeneous parts :

The quotient algebra J5/91 has also the structure of F-graded algebra,

because /M ^-yCJEy/Sly) (direct sum of submodules) and C/s Y /3lY )-

(7?Y//9IY C-^Y'/^Y+Y'- Therefore /3l is a /"-graded algebra and

^L-Y C/?Y/
S

#Y ) gives its homogeneous decomposition. The canonical

homomorphism -^ : E-+E/W. is a homomorphism not only of algebras,

but also of r-graded algebras.

3. Homogeneous linear mappings.3 ' Let E, E' be two /'-graded

algebras over the same ring A, and let X be a linear mapping of

E into E', i.e., a mapping X: E-*Ef such that

for every x, y e E ;
a 6 A .

DEFINITION 1.4. Z.<?/ v be any element of V ; X is called homo-

geneous of degree v if X(/TY ) cr E^ v for all 7 e P.

Evidently, if X : E-+Ef is homogeneous of degree v and X' : /s'-

/s" is homogeneous of degree v f

, then X' o X is homogeneous of degree

v+ v f
.

A linear mapping X : E-*Er can not always be decomposed into

a finite sum of homogeneous mappings as can be shown by a coun-

ter-example. But if the decomposition is possible, it is unique ;
it is

sufficient to prove the following:

3) This notion can be defined not only for graded algebras, but also for

"graded modules". But we shall restrict ourselves only to the casa of graded

algebras, because we use it only in this case.
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LEMMA 1.3. Let (Xv } ver fo? a family of linear mappings E-+Ef

,

in ivhich each Xv is homogeneous of degree v. If 2v\=0 and Xv(#)

(x : any element in E) except for a finite number of vel', then

X v for all v e/\

PROOF. For an element #Y of Ey , we have SXvOy) 0, but
V

since XV(AY ) e /T^ for each v e F, we have XVOY ) for all z>e/
7

.

For an arbitrary xeE, let x=2 #y be the homogeneous decomposi-

tion of x, then Xv(r)^v;xv(^v )^0, which proves that Xv=0 OeT).

4. Associated gradations and the main involution. Let /', L
J

be additive groups and let a homomorphism T:F-*r be given. To

any /'-graded algebra E~^]Ev, we associate the following /'-grada-
Yer

tion of E. For each 7 e / ', put

/?Y (^={0} if r-i(7) is empty) .

Then obviously E= 2 E^ and /Ey
-

ZEy cr E^^,. In this way /T

2 y"
can be considered as a /^-graded algebra.

DEFINITION 1.5. The I
1

-gradation E=^!>Ef ts called the associ-

ated I"-gradation of E, associated to the F-gradation E=^->Ey (with
YeT

respect to T).

We shall write ET instead of E if it is taken with the associated

/'-gradation rather than with the original /^-gradation. Obviously*

we have the

LEMMA 1.4. Every homogeneous element, every homogeneous sub-

module, and every homogeneous ideal in E arc also homogeneous

in ET
.

In the special case where /
T

is the group consisting of two eh-

ments and 1, and where T is onto, we write ES=ES++ES
- instead

of E7 EO+EI, and we call it the associated semi-graded algebra of

E. In that case, the kernel T'KO) d F is denoted by /""+, which is

a subgroup of index 2, while r~ 1(l) c r is denoted by /'-, which

is a coset of /' by r+ other than F+. Remark that every subgroup*
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of F of index 2 can be preassigned as F+ in some unique associated

semi-gradation. It may happen that F has a unique subgroup of

index 2. If it is the case, then reference to the map T can be omitted

without any ambiguity. For example, to every graded (i.e., Z-

graded) algebra E= 2 Eh is associated a unique semi-graded
h : integer

algebra Es=Es
++Es

-
y
where E\ S Ejt ,

E*-= S Eh. Clearly, if E
h : even h : odd

is a semi-graded algebra, then its associated semi-gradation is

identical with the original semi-gradation.

Main involution. Fixing a subgroup F+dF of index 2, let E~
2 EI be a jT-graded algebra, and let E8=ES

+ +EI be the associated
Yer

semi-gradation of E. Every element xeE can be decomposed uni-

quely into the sum of its ^-component x+ and its Ei. -component

X- : x=x+ + x~. If we define a map J: E-+E by

7(jf)=X+ X- (X=X++X- 6 E) ,

then J is one-to-one and linear, preserves the degree in the /
7

-grada-

tion of E, maps unit upon unit, and is an involution (i.e., / o J

identity). Moreover, / preserves the multiplication. In fact, let

jc-y-,(xy)-=x-y++x+y-, and so we have

Therefore, / is an involutive automorphism of the /"'graded

algebra E, which we call the main involution of E.

For convenience' sake, we define the symbolical power J(y e F)
<of the main involution as follows:

(J if i/er-

/>={
[identity if v e F+ .

Also we define the power (l)v
(*'/"') of the scalar (1) of

A as follows:

r-1 if veF-r

C-DV-
I
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Then we have, just as in the case of usual powers, the following

identities :

i) yvojv'^yv+v

ii) (-l)v (-l)v'=(-l) v + v/

in) <7
v
)
v/^(/vO v

iv) C(-l) vr-(C-lX) v

We shall denote iii) and iv) respectively by /vv/ and by ( l)
vv/

for the sake of simplicity, though no product is defined, in general

in r. Any power of the identity map is understood to be the

identity map, and any power of 1 is understood to be 1.

If x=S x-i OY e Et ) ,
then we can write

Ye/'

v) /GO-SC-l)7
*/.

Ye/

If p~Z, the additive group of integers, then these definitions agree

with the usual definitions of powers of an automorphism, or of an

element of an algebra.

5. Derivations. The definition of derivations in a graded

algebra given here is somewhat different from the conventional

definition of the derivations in the ordinary algebraic systems. In

the sequel, when we speak of derivations, we understand that a

fixed subgroup I\ d F of index 2 is given.

Now, let E, Ef be two /'-graded algebras over A and let <p be

a homomorphism of E into Er
.

DEFINITION 1.6. A cp-derivation D of E into Ef means a linear

mapping D : E >"', homogeneous of some given degree v e P, such

that for every x,y eE,

(1) D(xy)=D(x^(y)+(p(J^ DCy) ,

ichere /v
is the poiver of the main involution defined above.

In the case where E~Er and q> is the identity, D is called simply

a "
derivation ". Therefore a derivation D of E is a homogeneous

linear mapping of degree v, such that

(2) D(xy)=D(x)y+(fx)D(y) for x,yeE

If r=Z, the additive group of integers, (2) is written by
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(20 D(xy)=D(x)y + (\y**xD(y) for xeEh , yeE.

If the elements of E are all of degree 6 (0 : zero element of JT),

then D must be of degree 0, and (2) reduces to

(3)

which coincides with the ordinary definition of derivation. Also,

when v belong to /
7

+ (2) reduces to (3), while if v belong to r~

and xeE~, (2) reduces to

(4) D(xy)=D(x)y-x Z>00 .

A linear mapping satisfying (4) is sometimes called "anti-derivation",

but we do not use this terminology in these lectures.

The formula (1) can be written in another form. Denote by Lx

the operation of the left multiplication by x: Lxy=xy. Then (I)

is equivalent to

(5) D o LX~LD(X )
o
c/j+L<p(7v X)

o D .

In the case where E=Ef

,
and cp is the identity,

(6) D o LX=LD(X ) +Lj* x oD.

Remark that (5) and (6) do not contain the "
parameter

"
y.

LEMMA 1.5. For every (^-derivation D, ive have Z)(l) 0.

PROOF. Substituting ,v~jy 1 in (1), we get

and since /v l 1, ^(1)=1, we obtain >(1)^>(1)+/X1), which proves

Z>(1)=0.

Evidently, if D and D f are ^-derivations of the same degree,

DDf
is again a ^-derivation. Also we have

LEMMA 1.6. If </; : E-+Ef and <p' : Ef E" are homomorphisms

and if D, Dr are a <p-derivation of E into Ef and a q>
f -derivation of

E1 into E" respectively, then g>' D and Df o <p are (cp
r

(p)- derivations

of E-+E".

PROOF. We have only to check the condition (1). By direct

calculation we have
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and

and since <//
o /) and Df

q> are of degrees i/ and v f

respectively, we

have our assertion.

THEOREM 1.4. Z^/ D be a y>- derivation of E into E1

',
F homo-

gcneous subalgcbra of E, S a set of homogeneous generators of F,

and let Fr be a homogeneous subalgebra of Ef
. Then if D(S)dF

and cp(S) ci F
9
we have D(F) d F and <p(F) d F.

PROOF. The latter inclusion is evident, because <p is a homomor-

phism. The former is proved as follows. Let F\ be the set of ele-

ments xeF such that D(x) eFr
. It is evident that FI is closed under

addition and scalar multiplication. Also if D(x)eFf and x~^Xy,
then the D(XI )'s are the homogeneous components of D(x) and

D(XI ) e Ff

,
so we obtain Xy 6 7*i. Therefore FI is a homogeneous

submoditle of F, so that Are FI implies J*xeFi. Now for x,yeFi, we

have

and since >(#), yXj'), <p(f
jx\ D(y) all belong to Fr

,
we have xyeFi9

which proves that FI is a subalgebra containing S. S being the set

of generators of F, we have FczFj, which proves Z>(F)czF/
.

COROLLARY 1. Let S
3l and W be homogeneous ideals of E and Er

respectively, and S be a set of homogeneous generators of 51. If

D(S) ci 91', ?(S) c= %', MK? /rfli;^ D( s

it) d 31', and <p(W) d W.

PROOF. Again the latter inclusion is evident. The former is

proved in a similar manner as before, showing that the set

is a homogeneous ideal.

COROLLARY 2. Let F, S be as before. If D(S)={Q}, then Z)(F)=

(0}.
4 >

PROOF. In a similar manner as in the proof of Theorem 1.4, we

can show that

4) Remark that this assertion holds without any assumption on ?.
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F2={x\xeF,

is a homogeneous subalgebra, which proves Fd F%.

COROLLARY 3. Let F, S be as before. If two cp- derivations D, LP

coincide ivith each other on S, then they coincide on F.

PROOF. From this assumption, D and D' are of the same degree.

Then apply Corollary 2 to the derivation DD'.
It follows from this corollary that a derivation D is completely

determined if its values on the elements of a set of generators are

given.

THEOREM 1.5. Let E, E' be F-graded algebras, <p a homomor-

phism E>E', and D a y- derivation of E-+Ef
. Also let

S
3l and W be

homogeneous ideals in E and E' respectively such that Z)(9l)cz5I',

and <p(9l) cz W. Under these assumptions, the induced mapping D
E/%-*E'/W obtained from D is a lp-derivation, where </> means the

induced homomorphism E/Wr+E'/W obtained from q).

If we use the
" commutative diagram

"5) the map D and <p are

represented as follows:

- E'

where ty and ^' are the canonical mappings.

5) In a diagram, let every vertex represent a set, and let each oriented

edge represent a mapping. A direct- p
ed path in a diagram represent a

mapping which is the composition

of successive mappings assigned to

its edges. If, for any two vertices,

any two directed paths connecting

them give the same mapping, then

the diagram is said to be commuta-

tive. For example in Fig. 1, for the

vertices P and Q and the paths as

in it, the commutativity means 740/30/20
/4 #6 S3 g2 Si /i(#) = f r every x e P.

gt

8*

=
5
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PROOF. From the theory of mappings of modules, it is easy to

see that D is a linear mapping which makes the diagram commuta-

tive. The other conditions (D being homogeneous and satisfying

(1)) are proved by direct calculation from the definitions.

D is called the derivation deduced from D by going over to the

quotient algebra /9l.

Hereafter to the end of this paragraph, we assume that E~Ef

and yj is the identity.

THEOREM 1.6. Let D, D' be tivo derivations of E of degrees v

and v' respectively. Then

(7) J=Z>/>' (-l) vv/ D'D

is again a derivation^

PROOF. It is evident that A is linear and homogeneous of degree

v+v f
. We have only to check the condition (5) (equivalent to (1)).

For D and D' we have by (5)

DLx=LDx+Ljv XD ,

Then

v XD'D ,

and then

4Lx=Diy--(--iy"'iyrr}Lx=Ljx +/v+ V*4+L&x D'+L& ,XD
where

e=DJ'(WJ'D and 8'=fD'(-I)

Now it is sufficient to prove that (9 (9'~0, i.e.,

Uvjv'D and

But the former one is obtained from the latter by exchanging D
and X, so we show the latter one. For a homogeneous element x

of degree 7, Drx is homogeneous of degree <y+v
f

,
and then

6; We omit the symbol o in the composition of mapping for the sake of

.simplicity.
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which proves (8). Thus our proof is completed.

COROLLRRY 1. If one of v and v 1
is in /\, and in particular

when v=.v'Q, then

is again a derivation. If both v and v f arc in F~, then

DD'+D'D
is a derivation.

COROLLARY 2. If D is a derivation of degree v e F - then D1 is

also a derivation of degree 2veF+.

PROOF. If we put D=Df in the last part in Corollary 1, we

have 2D1 as a derivation, and the constant coefficient 2 may be

omitted, provided that A is a field of characteristic other than 2.

However, we shall prove this assertion directly as follows. The

characteristic property that D is a derivation of some degree v in

/
7
- is

(9) DLx=LDx+LJx D.

Since D2 is of degree 2v in /\, we have

But since D is of degree z^e/
7

_, we have JDDJ from (8), and

then

which means that D1 is a derivation of degree 2vel\.

6. Existence of derivations in free algebras. Let F be the

free algebra with free system of generators (#i)/e/ over a ring A.

F is so graded that #, are of degree 1. Let E be a graded algebra

over A and y> a homomorphism F*E.

THEOREM 1.7. Assume that for each / e /, a homogeneous element

yi e E of degree v-\-\ is preassigned arbitrarily, tvhcre v is a fixed

integer. Then there exists one and only one cp-derivation D of F
into E, which is of degree v and satisfies D(xi)yi.
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PROOF. The uniqueness follows from Corollary 3 to Theorem 1.4.

So we shall prove the existence. By Theorem 1.1, the elements pa =

Xii"-Xih form a base of F where c-=G'i, ,&) runs over the set 2

consisting of all finite sequences taken from /. We shall define

(p<r ) e E by induction of the length of cr. First we put

(1) S(Ar )=8(D=0

for the empty sequence <TO . If 8(Ar) has already been defined for

every a with length less than h, we set

(2) SC*,-, ^A )=SU- 1 -Xi^tptXi^+ tfrtWxh -*'A-I^V

In the case where /z~ 1, we have ^C^OJ'i- From the definition,

(/O is homogeneous of degree /j+i> if a has the length h. For, if

/z=l, SGr,
1)^! is of degree v+ 1 by assumption, and if this property

has already been proved up to h 1, the degrees of the terms on the

right hand side in (2) are (h l-fJ>)+ l and (7z--l)+O+ l) respec-

tively, which are both equal to h + v. Hence ^(/^ ) is of degree h-\-v.

Now we define a linear mapping D:F-*E such that D(pa )
=

8(p<r) for all ere 2,'. Since (p<r) forms a base of F, such D always

exists and is determined uniquely. Evidently D is linear and homo-

geneous of degree v. Next we shall show the condition

(3) D(uv}=D(ti)<p(v)+<p(jT'ttiD(v) (u, veF).

We first remark that

holds by (2), and then forming a linear combination of (pff ), we

obtain by linearity of D,

(4) D(uxi)=D(ti)<p(xi)+<p(f>uWxi) .

Now we denote by F\ the set of all elements v of F which satisfy

the condition (3) for all ueF. From (4), we have #,-eFi and also

1 eFi, for if v=l, (3) reduces to a trivial relation D(u)=D(u). We
shall prove that veF implies vxieFi. In fact, substituting uv in

(4), we have
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(since

(again by (4)).

which proves our assertion. Therefore beginning with x^ e F\ and

repeating this process, we have py &F\ for every <r(z"i, */*). Then

by the linearity of D, we have finally that all the elements ofveF

belongs to Fit which proves that D is a ^-derivation satisfying the

conditions of our theorem.



CHAPTER II. TENSOR ALGEBRAS.

Tensors are usually represented by a quantity with many indices

such as T^yk . However, we avoid such a representation in these

lectures not only for aesthetic reasons, but also due to a more es-

sential reason. Tensors have indices because of the use of bases
;
on

modules without bases, such representation is impossible, while the

tensor can be also defined in such cases.

To define a tensor algebra, we use the universal algebra, and

then we prove the existence and uniqueness of the tensor algebra.

Hereafter we assume that the basic ring A is commutative,

unless the contrary is explicitly stated.

1. Tensor algebras.

DEFINITION 2.1 Let M be a module over the basic ring A. An

algebra T is called a tensor algebra over M, if it satisfies the follotv-

ing universality conditions :

1) T is an algebra containing M as a submodule y and is gener-

ated by MV
2) For any linear mapping X of M into an algebra E over A,

there is a homomorphism 6 of T into E tvhich extends X. This is

represented in the commutative diagram :

THEOREM 2.1. For any module M over A, there exists always a

tensor algebra T over M. T is unique under isomorphism.

PROOF. Uniqueness : Let jT, Tf be two algebras with the above

universality properties over M, then TID M, T ID M and the identity

mapping /' : M-*T extends to a homomorphism 6 : T-+T', and so

1) This means that T is generated by M and 1 in the ordinary sense.

See the
"
Conventions ".

17
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the identity mapping /: M-+T to a homomorphism 6f
: T-+T. The

mapping 6f o ;
s a homomorphism T-+T, which coincides with the

identity on M. But since M generates T, 6 ! 6 is the identity of

T-+T. Similarly 6f is the identity of T-+T, which proves that

T and T' are isomorphic as algebras. Therefore the tensor algebra

over M is unique under isomorphism.

Existence : First we shall construct an algebra satisfying some-

what modified condition of 2), and then we shall show that this

algebra also satisfies 1).

For a while, we forget the structure of module of M and consider

M as a mere set. In 1, Chap. I, we have proved that there exists

a free algebra F over A freely generated by the set M. To dis-

tinguish the addition, subtraction, multiplication and scalar multi-

plication in this algebra from those of M, we denote the formers by

-f, ,
o and a-x(oteA) respectively. Therefore we remark that

when x,y e M, we have x+y <t M, x- y $ M, and a x$ M in general.

Next, we denote by S the set of all elements of the forms

(1) x+y(x+y) (*, y e M)

and

(2) a-x (ax) (aeA,xeM).

Let 5 be the ideal in F generated by S. Put

(quotient algebra),

and denote by q> the canonical mapping F+T.

We first prove:

LEMMA 2.1. The algebra T satisfies the follotving condition :

2') If \ is a linear mapping of M into an algebra E over A,

there exists a homomorphism 6 : T-+E such that

(3; (0 o (p) (*)=\O) for all x&M.

The expression (3) is represented in the commutative diagram where

1 means he injection M-+F:
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PROOF. By the universality of free algebras (Theorem 1.2), there

exists a homomorphism : F >E which extends \ :

Next we prove (9() 0. It is sufficient to prove that 9 maps all

generators of X upon 0. Since each generator of has the form

(1) or (2), we consider them separately. In fact,

(& is a homomorphism: F~+

X(#+>0 (0 extends X.)

=0 (X is linear.),

and similarly we have

x ax} a x}

which prove our assertion. Hence the kernel of containing

defines a homomorphism Q : T-+E and if xeM, we have o

which proves our Lemma.

Now we shall prove that T also satisfies the condition 1) given

in Definition 2.1. It is sufficient to prove that cp induces an isomor-

phism on Mt i. e.,



20 CERTAIN IMPORTANT ALGEBRAS

(4) X n M-{0} .

Although (4) may be proved directly, we shall prove it using the

above Lemma 2.1. Put E=A+M (direct sum). Since A has a unit

element 1, E is the set of elements of the form a - l+x, (aeA,xe M).

Define a multiplication in E by

(5) (*a+*)(6-l+jO=06-l4<fo+tfy) (0, e A ; *,j> e M) ,

then we have #y=0 for x,yeM. It is easy to verify that E is an

associative algebra over A with unit element, and the injection M-*

E is a linear univalent mapping. Therefore we have a homomor-

phism : T-+E such that

(6) 6 o <p(x)=x for all xeM,

by Lemma 2.1. If xeMf] X, we have <>(#) and then (6) asserts

that x=Q, which proves (4).

Also if x,yeM\ aeA, we have

This proves that TID <p(M), and then <p(M) and M are isomorphic

with each other as modules. So we identify them.2> Then, since T
is a quotient algebra of the free algebra generated by M, M and 1

form a set of generators of T. This proves that T satisfies the

condition 1). Therefore the algebra T thus constructed is a tensor

algebra over Mt
which completes our proof of existence.

EXAMPLE 1. When M has a base consisting of only one element

{#} the tensor algebra T over MAx is the polynomial ring A\jc}.

PROOF. Let T be the tensor algebra over M and P be the al-

gebra of polynomials of X with coefficients in A. There exists a

linear mapping X : M-+P which maps x upon X, and we have a

homomorphism cp : T-+P which extends X. On the other hand, T
being a ring generated by x and 1, an element y e T has the form

2) The identification is due to the following property: Given any set

and a set A/, there is a set Y equipotent to X which does not meet M.
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, and

Thus, cp:T-+P is onto. Also, 9>(S 0jb**)=0 implies 2 a^X*=0, and

then we must have ak=Q, which means that <p is an isomorphism

T->P. Therefore we may put T=P=

2. Graded structure of tensor algebras. In the above con-

struction of the tensor algebra T over M, the ideal % is generated

by S whose elements are all of degree 1 in F. Hence defining all

the elements of M as of degree 1, the ideal % is homogeneous (cf.

Theorem 1.3), and F/^=T is a graded algebra. Decomposing F
and T into homogeneous components,

F=Z!F*, and T=^Tk9
h h

we have

(1) 2V=F*/(S FA)

and especially,

TA-O for // < , Tb^A 1 , Ti=Af .

Also T& is spanned by the products of h elements of M.

We shall give a universality property of T), as in the case of T.

THEOREM 2.2. Let /3 be an h-linear mapping^ of M^=Mx xM
into a module N over A. Then there exists a linear mapping ty of

TH into N such that

(2) ^(*r *%)==(*i,-",*/0 for all xit ~,XheM.

In the right hand side of (2), XIXH is the product of Xi, ,x/t in the

tensor algebra T.

PROOF. Let S be the set of generators of . An element of %

is the sum of a finite number of elements of the form

3) An /z-linear mapping means a function p(*i"'t Xh) of h arguments x\,

,Xfi 9 which is linear with respect to each argument when the other h l are

kept fixed, i. e., we have

for a, be A ; x\ 9 ~',%h> x
i'
e A/; i = l, ,h.
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aasnb, (seS; a,beF) ,

where a is the free multiplication in F. Hence if u e Fjt fl , it has

the form

m
# S a^nsiobi , (s,- 6 S ; #,-, bf e F) ,

1-1

and decomposing ai and bi into homogeneous components

X! Gik i=X] bii (aik e Fk> hi e

we have

Here a^osi^bn is homogeneous of degree A+/+1, because s,- is

homogeneous of degree 1. On the other hand, any homogeneous

clement of degree k is the sum of products of k elements of M.

Therefore we have that,

(3) ue Fh fl is the sum of elements of the form :

; seS) .

Now the {zin~- &Zk\zi,-~,zhGM} forming a base of FA, for a given

//-linear mapping /3 :Mh-+N, there exists a linear mapping 2T : /*>i-*

TV, such that

,Zh) for all z\ t ,z/t eM,

because F is free. Now we shall show that

(4) (Zf]F)={0}.

In fact, by the above remark (3), it is sufficient to show that

(5) Wfa a - &xk a (x+y(x+y)) uyl a Djy/) ,

and

(6) ^(^a.-.n^aCa-a'^a^n-D^/) 0, (&+/+l=/0.

Since ?T is linear in each of its arguments, we have
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(because p is /^-linear) ,

and similarly we have (6), and then (4) is proved.

Thus, by (1) and (4), defines a linear mapping ty of TA=

Fh/(fh ft 5t) into N, and W ^ o ^A == /? on M*. (r/>^ is the contrac-

tion of <> to F/z ). In diagrams this is represented by:

AT .

Since 9r
is not only linear, but a homomorphism, we have also

which proves our Theorem.

Now we shall define the tensor product of two modules using

the tensor algebra described above. A characteristic property of

tensor products will be given later (cf. 4).

DEFINITION 2.2. Let M
y
N be two modules over A. We set P

M+N (direct sum), and let T be the tensor algebra over P. The

sitbmodulc Q of T2 spanned by all products {xy \

xe M, y e N} is

called the tensor product of M and N, and denoted by M @ N.

xyeQ (x e M, y e N) is also denoted by x^y.
From Theorem 2.2, we have

COROLLARY. Let there be given a bilinear (~2-lincar} mapping

ft of MXN into a third module Ry then there is a linear mapping

tyofQ into /?, such that ty(x &y)=ft(x,y) for every xeM and y e Ar

.

EXAMPLE 2. If M has a base {#,-}i>/=B, then T is isomorphic

to the free algebra on B. This theorem asserts that a tensor is
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represented in the form ,-,.., if a base is determined.
n

PROOF. Let U be the free algebra over B and again we use the

notations -f, ,
n and a*x for the laws of composition in U to

distinguish them from the ones in M.

Let X be linear mapping Af->7, which is the identity on B :

Then there is a homomorphism 6:T-*U which extends X by the

property 2) of T. On the other hand, since BdMc:T, the uni-

versality property of free algebra U asserts that there exists a

homomorphism 6' : U-+T which is the identity on B. These relations

.are represented in the commutative diagram :

U
e

Then 6f o is a homomorphism T-+T and is the identity on B. Since

B is the base of M, it is also the identity on M, and therefore also

is on the algebra T generated by M. Similarly 6 o Qf
is a homomor-

phism U-+U and is the identity on J5, and therefore also is on the

algebra U generated by B. Therefore 6 and 6f are isomorphisms

which are reciprocal with each other. Also since X maps M into

U\ (submodule of elements homogeneous of degree 1 in U), T is

isomorphic to U not only as merely an algebra, but also as a graded

algebra, which proves our assertion. If {xi}ltl is a base of M,
^every element in T is of the form

^r~i
t

when ai r..ih A is the component of the tensor in a familiar form.

3. Derivations in a tensor algebra. Now, we consider a

module M over A and the tensor algebra T over M: T=^h Th . We
shall prove the following
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THEOREM 2.3. If X is a linear mapping Af-Tv +i O : any integer

^> 1), then X may be extended uniquely to a derivation in T (of

degree *>)

PROOF. Uniqueness is obvious since M generates T. So we

prove the existence of an extension. Consider the free algebra F
on the set M. Then we can write T^F/, Tv+1=Fv+1/(^ fl Fv +i),

where % is the ideal in F generated by the elements of the forms

x+y(x+y) (x,yeM),

a x (ax) (a e A, x e M) .

Denote by TT the canonical map F^+\ >Tv +i in the factorization Tv+i=

Fv +!/( H -Fv+i)- Fr eacn xeM, we select an element /K#)eFv +i

such that X(jc) Tr(ylU)). This defines a map A : M->FV+1 such that

the diagram

X

is commutative. Since M is a system of free generators of F, the

map A : M >Fv +i can be extended to a derivation Z) of F (of degree

z>). Now we shall show that

(1)

In fact, we have

so that

(2)

But now, since ^, y t x+y are in M, we have

Therefore the right hand side of the equality (2) can be rewritten as

XC*)+X(:y)--X(*+jO,

which is zero, since X is linear. This proves that D(x+y(x+y))
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lies in the kernel of TT, and therefore in !. Likewise we obtain

, proving (1). Thus D induces a derivation d of

T in such a way that the diagram

D

, 7T

>r

(TT : canonical map F >7") is commutative. To see that d is an

extension of X, let xeM. Then x7r(x) and

This proves the theorem.

Tensor representation. Next, we want to make the following

observation. Let M, Nbe modules over A, T(M), T(AO their tensor

algebras and X : M>N a linear map of M into N. Then, as a

spxial case of the universality theorem for tensor algebras, X ex-

tends uniquely to a homomorphism T(M)-+T(N). In the special

case where MN, and where X is an automorphism (i.e. an inver-

tible linear mapping) of M, X extends to an endomorphism A : 7\ AT)

->T(M). We assert that this endomorphism A is an automorphism.

To prove this, let X' be the inverse of X. Then X' extends also to

an endomorphism A f
: T(M)>7\M), and the composite endomor-

phism A A' : T(M) >T(M) coincides with the identity on M, so

that A A'= identity on T(M) which is generated by M. The same

is true for A! A. Thus A, with its inverse A f

,
is an automorphism.

Now, the restriction of this automorphism A on the h-th part

T/i(M) of 7\M) gives an automorphism AH of 7^(M). The cor-

respondence \-*Ah is a homomorphism of the group of automorphisms

of M into that of the module J),(M ). This homomorphism we call

the tensor representation of degree //.

REMARK. Suppose M is a submodule of N, for which the injec-

tion map M-*ATis denoted by X. Then the homomorphism A : T(M)

->7\Ar
) induced by X is, in general, not an isomorphism. However,

in some special cases, A is an isomorphism ; for example, in case
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where N is the direct sum of M and some other module P:N=

M+P (direct), or in case where both M, N have free bases.

The following provides an example of which A is not an iso-

morphism. Let A=Z be the ring of integers, #={0, 1, 2, 3} the cyclic

group of order 4, and let M={0, 2} be the subgroup of N of index

2. Then A maps the non-zero element 202 of MM~M upon

the zero element of N& N=N, for we have A(2 02)^2 2--=

4(1 1) 0. This shows that A : T(M)~-*T(N) is not an isomorphism.

4. Preliminaries on tensor product of modules. Before con-

sidering tensor product of semi-graded algebras, we give here some

preliminaries on tensor product of modules.

Characterization. Let Mi,-,Mh be modules over A. Then the

tensor product P=Mi -~ Mh can be characterized in the following

manner :

1) P is a module over A into which there is an h-lincar map

xMn-+P

such that the elements a(#i, , XH)=^X\ ---xh eP (#i e Af,-, i'= 1
, , A)

span P.

Here we say that the map a is ^-linear if tf(#i, ,#*)=#i-

XheP(XieMi, =1,-,A) depends linearly on each one of the

entries Xi, ~,Xh when the others are fixed.

2) // # /5 an h-linear mapping of MI x x Mh into a module

Q, then there is a linear map q>:P-*Q such thai cpa@.
Associativity and commutativity. Let MI, ,

Mk , Mk + i,-, Mh

(!<>k<h) be modules over A, and put P=Mi 0-- & Mh, P'=

(Mt
Mh ) (Mk+ i Mh}. Then there is an isomorphism

P-*pt which maps x\ -xk xk +i
- Xh upon (*i

- xk )

(xk +i Xh) for any XieMf (i=l, -,A).

Since we have given the characteristic properties 1), 2) for the

tensor product, we need only to prove 1) that (#1 #*) (#* i

#*)e /*(#,- e M,-, i=l, -,*) depends linearly on each argument,

and P' is spanned by elements of the above form, and 2) that, if
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8 is a multilinear map M\ x x MA->(?, then there is a linear

map g>:P'-*Q such that

1) is obvious. In order to construct the map </;
: Pf

*Q, we con-

sider first the mapping

for each set of fixed values of Xk+i,~-,Xh* This mapping is a ^-linear

map: MI x x Mk-*Q. Therefore, there is a linear map, say

^fl..*A : Ml ^ Mk"*Q> Such that

# "

Now, let / be any element in MI 0---Q5 Mk. For this fixed t, we

consider the mapping

(^>i,-s^)-*^ f ]....*A C/).

We assert that this is a multilinear mapping. In fact, this is true

if / is of the form tx\ -xk ,
because in that case we have

Let now /=2^i^i, where each /,- is of the form Xi&---xk . Since

*h : MI & & Mk-*Q is linear, we obtain

Each summand ai^xk+ i ..
9
xh (ti) being multilinear in Gr&-n,---,#A), we

can conclude that ^xk ^.. 9
xh (t)

is multilinear in (#&+i, -,#;,). Thus,

for given t e MI g) Af^?, there is a linear map 7* : Mjfe n (^) A/A

^0 such that 7/C^^-i -^)=^**+j. ...^CO .

Similarly, we can prove that, for any fixed element ueM^+i--
(g) M^, the mapping *->7/O) is linear. Thus, the mapping (/, w)->

7i(w) is a bilinear map: (Mi Mk)x (Mk n 0---<g> Mh}->Q, and

so, there is a linear map 9>: (Mi (g)--- MAJ) (M^u 0- $ Mh)~>Q,
such that

q>(t )=7/() (/ e A/t g) MA , /^ e M^ + i (

Thus, for $=^0. ^
ft , w=^ fl ,TA, we have
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**)O* + i

Avhich proves 2). Thus our rssertion is proved.

By identifying Xi Xk #A+I -#A with

+i -#*), we take

Let again MI,-- , A//, be modules over A, and let TT be any permu-

tation of {1, -,/?}. Then there is an isomorphism X* of MI---

MH onto Mtfd) 0---0 M(A) such that

\r(#i" 0#A)=#,e(i>" #*(/ (#/ eM
f , i=l,-, 70.

In fact, since the mapping

Ui, ,^)->^(D- x^h )

is multilinear, there exists a linear map X* : M\ 0M/i->MTfa )

) such that

So it remains only to prove that X
rf is invertible. Let X^ : M^D

Af^/i) ->Afi MA be the linear map obtained similarly

from the multilinear mapping

Then

XU^(l) X(fo )=^ *ft ,

so that

X^ o Xi identity of Mrf(1 )

- M^^) ,

X^ oX
rt identity of Mi -MA.

This proves that X
rf , with its inverse X^, is an isomorphism onto.

REMARK. Identification of (#1 ---^A) Gfyfi #) w^h

#1 #A in the case of associativity does not cause any confusion,

while, identification will not be permitted in the case of commuta-

tivity. The reader must be careful not to make the following sort

of mistakes. Consider the case M^M^M, MB x\, #2- Can we

identify x2 xi with x\ #2 in M M? No ! These two elements

.are by no means identical in general.
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5. Tensor product of semi-graded algebras. Let E, E' be

semi-graded algebras over A :

Now, we shall give E E f

,
the tensor product of the modules E, E 1

,

a structure of semi-graded algebra. To do this, we first define the

multiplication in E)E f

,
in terms of a bilinear map (E&E')x

Since (E$E' + )+(EE'-) = EE'=(E+E')+(E- E f\
it suffices to define four bilinear maps :

/

) -> EE',

which will b2 well defined as soon as quadri-linear maps :

ExE f+xE+xE f -> E&E',
ExE' + xE-xE f -> EE',
ExE f-xE+ xE f -> E<$E' 9

ExE'-xE-xE' -> EE'
t

are given. The first three maps are defined by

(xeE,y'eE' t
and either

i

j

xf eE' +J yeE f

(x,x
f

,y,y
f

)-*xy x'y
f

,

or x'eE' +,yeE-

\or xr e E f

-,y e E+ ,

while, the last one is defined by

(#, x?, y, y
f

)-> - (*y) (*'y') (x zE,x'eE'-,yeE-,y'e E') .

In this way, we obtain a bilinear multiplication

E f

} d E E f
. Now we assert that this multiplication is associative.

Since every element of E E f
is a linear combination of elements

of the form x xr

,
where both x and xf are homogeneous in the

semi-gradations, it will be sufficient to check the associativity of the
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multiplication for elements of that form. For convenience' sake, we

set

TO if xeE+ ,

ll if xeE-,

where 0, 1 denote the elements of the gradation group F~ (0, 1}.

Then we have

e(#y) e(#)-fe(30, if both x, y are homogeneous.

Similarly we define e'CrO for any homogeneous element x' e E f
. Then,

as is easily seen, we have

(1) (X Xf

) (y 0/)~ ( l)
e'<*Oe(y) (Xy^ Q?) (#y )4)

(xeE,y'e E r

, x
1 homogeneous e E f

, y homogeneous e E) .

Now we check the identity

(2) ((* x!) . (y 0/)) - (2 20= (* *0 C^ 0/) (2 20)

(,r, j', 2 homogeneous e E, and #',/, 2r homogeneous e E') .

Computing the left hand side of (2), we obtain

(U *0 (j> 0^0) (2 20=(-l)e/(^/)e(3'
) (^ *'/) (2 20

= ( l^O^n'C*'*'')**) (^2 0^/20

while, the right hand side of (2) can be reduced as follows :

(x ^0 -

(C;y y') (2 20)^(-l) e/(y/)8(2) (# x') (yz 0/20

This proves the associativity of the multiplication. If 1, 1' are

the multiplicative units in E, E f

respectively, then it is clear that

1 1' e E E f
is the multiplicative unit in E E f

.

Thus E E' is an associative algebra, which is semi-graded,

namely, if we put

4) See p. 9, (the definition of (-1)VV
0.
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then

and

')+ <= ( ') ,. ,

+-(E&E')-c:(E&E')-,

- (E & E') + c= ( E>). ,

Observe that, if E, E' are /^-graded algebras of which a fixed

subgroup F+ of /' of index 2 is given, then by the associated semi-

gradation

E E r
is a semi-graded algebra. The associative algebra EQ E'

also admits the following 7 "-gradation :

') ft ,
where

of which the associated semi-gradation is just the semi-gradation of

EE r

given above. Direct definition of the multiplication in the

/^-graded algebra E E r
is given by

xf

y
f

(xeE.x'js E,, y e E^y f e E') .



CHAPTER III. CLIFFORD ALGEBRAS.

1. Clifford algebras. A Clifford algebra is an algebra associ-

ated to a quadratic form f(x), and, roughly speaking, the one

satisfying

(1) x2
=f(x) - 1 .

First we define a quadratic form without using the base of module.

DEFINITION 3.1. Let M be a module over the basic ring A. A
quadratic form on M is a mapping f: M-+A such that

1) /(a#)=rt2/(#) for all aeA,xeM;
"2} the mapping (x,y)-*f(x+y)f(x)f(y)=fKx,y)

of MxM into A is bilinear. tf(x,y) is called the bilinear form as-

sociated to f.

It is evident from the definition, that is symmetric :

/3(x, y)=/3(y, x) and 0(x, x}^2 f(x) .

Two elements x
t y such that 0(x, y)= is said to be orthogonal

with each other. When M is an w-dimensional vector space over A

with a base Olf ,#) and if /O)=/Ci] ,-*,) ^2 -f -f 2
,
then we

i-l

have

Hence the above definition of orthogonality coincides with the ordi-

nary one in the w-dimensional space.

Hereafter we assume that there is given a quadratic form f(x).

DEFINITION 3.2. Let T be the tensor algebra over M, and denote

by the multiplication^ in T, Let & be the ideal generated in T
by all the elements of the form

(2) x x-f(x) 1 , xeM,

I) In this chapter, we use this notation to distinguish it from the other

various multiplications which will be considered later.

33
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where 1 is the unit of T. The quotient algebra C=T/& is called the

Clifford algebra associated to f over M.

If TT is the canonical mapping J1

>C, 7r(M) is a submodule of

C, which generates C. Also we have

(7r(;0)
2=/GO 1 if xeM.

We remark that the kernel of TT in M is not always 0, and we

cannot identify M and TT(M) in general. However, if we wish to

construct an algebra satisfying (1), the universality leads to this

definition as is shown in the following:

THEOREM 3.1. Assume that ive have a linear mapping \ of M
into an algebra F such that (XO))2

f\x} 1 for all xeM. Then

there exists a homomorphism ^ of C into F such that

\(x}~ 99(7T(*)), for all xeM.

This is represented in the diagram:

X

PROOF. The definition of the tensor algebra asserts the existence

of a mapping A: T-*F which extends X. If xeM, we have

A(x *-/(*) - D=(M*))2-/(#) 1=0 .

Thus the generator of K being mapped upon 0, we have 1(K)=0,

which proves that A defines a homomorphism <p of C into F satis-

fying Aq> TT. The contraction X of A into M satisfies our re-

quirements.

If we put f(x)=g(7r(x)), g is a quadratic form in ?r(M) into

A, and for y e ?r(AO, we have

Semi-graded structure of Clifford algebras. We have described

in the previous chapter, that the tensor algebra T is graded, and a

fortiori, is a semi-graded algebra. Since the element xx or
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is of degree 2 or respectively, the elements (2) is homogeneous

in the semi-gradation of T. Decomposing Tinto T+ + T-, (2) belongs

to TV, and ( is homogeneous in the semi-gradation of T, which

proves that C=T/& is a semi-graded algebra. Putting C=C++
C-, C+ and C- are generated by the products of even and odd

numbers of elements of 7r(M) respectively, because

C+=S 7r(Th) and C.= U ir(Th ) .

h : even ft : odd

If we put xco'x) for xeM, we have x2=f(x) 1, and then

(3) #j? -f.y x=(x+JO2-*2-?2

=/(*+?) - !-/(*) !-/(?) !=(*, ?) 1 .

Therefore, if x and y are orthogonal, we obtain

(4) xy+yxQ, or xy=yx.
2. Exterior algebras.

DEFINITION 3.3. When the quadratic form f reduces to 0, //?<?

Clifford algebra C associated to / 0, is called the exterior algebra

over M.

We have easily

(1) **=0

and

(2) xy+yx=Q, or xy=yx,

in the case of exterior algebra. The generators of 5 reduces to

x x e TZ which are homogeneous not only in the semi-gradation

of T, but also in the graded structure of T, so that the exterior

algebra ET/^ has the structure of a graded algebra.

THEOREM 3.2. In the case of exterior algebra E, TT (the canonical

mapping of T into E} is an isomorphism on M, and identifying M
with 7r(Af), we may imbed M into E.

PROOF. Since the elements of ( are linear combinations of sums

of elements of the form

where x 6M
y and u, v are homogeneous in T. If u e Th, v e Tk ,

we

have u O #) ve T^+k+2 and then this has a degree not Ises
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than 2 provided that u = and v 4s 0. Therefore the homogeneous

components of an element of ( which are not must be of degree

^>2. On the other hand, the elements of M being of degree 1, we

have (5 fl M (0), which proves that TT is an isomorphism of M.

Hence we identify M with its image under TT in E. Then we

have EQ~A 1, \ M. For h > 1, >. is spanned by the products of

h elements of M, i.e., by the elements XIXH, where Xi&M.

3. Structure of the Clifford algebras when M has a base.

Let M be a module over A and / a quadratic form on M. Let

C=T/( be the Clifford algebra associated to / over M.

1. First we consider the case M=A-x (i.e., Mis generated

by a single element x). As we have already proved in 1, Chap.

II, the tensor algebra T over M=A-x is the polynomial ringA [XL

and ( is generated by x2
/(#) 1. If we denote by the class of

X under TT, C=7VK has the form A+.A- where 2^/,) 1. Hence

A being a free module with a base
,
the canonical mapping M->C

is an isomorphism A x-+A d C. Therefore we may imbed AT into

C in this case.

2. Next we consider the case where M~N+P (direct sum),

and N and P are orthogonal with each other ; i. e.,

(#,jO=0 for all xeN,yeP.

By the orthogonality property, we have

(1) /(*4oO=/00+/( JO if ^ e AT and ^ e P .

THEOREM 3.3. Under such conditions, let CM, CM and Cp be the

Clifford algebras over M, N and P associated to f or the restrictions

of f on N and P respectively. Then we have

(2) CM=CM Cp (tensor product).

PROOF. Let TM, TV and 7> be the tensor algebras over M, N
and P and TTM,

TTN, irp the canonical mappings of 7V->Cjv/, Tx~*CNr

Tp-*Cp respectively. By the definition of tensor algebra, the injec-

tion mapping q> : N-+M is extended to a homomorphism <f> :

and since
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#-/(#) - !)=# * /GO 1, for * e JV ,

V M
defines a homomorphism of Cjy into

which will be denoted also by <>* ^y_ >T
^N

>C

Similarly we have a homomorphism ^ of I

Cp into CM, which extends the injection J,

^
^ |

mapping P->M M-*TM--->CM
/ 7TA/

The product #>0/>/r( in C^/ being

bilinear with respect to u e CAT, # 6 Cp, we have, by the characteristic

property of tensor product, a linear mapping of the module

CN C> into CM such that

(3) B(ti ^ v)=yX>K*0 ( e CV, e C .

By the orthogonality of N and P, we have for xeN, y eP,

(4) #y j

where ;e 7rA/^C^))=^(7TjVC^)) and j;=7rAfC^rC^))=>/r C
<

7

Now C^ (CA/) f +(CAr)- (semi-graded), where (CV> + , (C^/)- are

spanned by the products of even or odd numbers of elements of

7Ttf(N) respectively. Similarly we put Cp (Cp) + + (Cp)_. By the

anti-commutativity (4), we have

if either u e (C^r) f or
(5)

;

if both we(Cy)- and

Here we shall show that

LEMMA 3.1. The linear mapping 6 defined above is a homomor-

of CN 31 Cp->CJv/, i. c., satisfies

(6)

where the term in the parentheses in the left hand side of (6) is the

product of u Q) v and uf
v' in CN Cp tvhich has been defined in

5, Chap. II.

PROOF. It is sufficient to prove that (6) holds when u, v, ', v'

are all homogeneous in the semi-graded structure.
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Putting

if z;e(CP ) +

if 0e(C-,
and

if uf 6 <

e'=
if uf e

we have (u t>) (&' */) ( I) 778
'

z/w' 00' by the definition of the

product in the tensor algebra (5, Chap. II). Then we have

0((u Q 0) (u' !;'))= ( l)"
s/ 0(w' 000

(by (3))

(since 99 and ^ are homomorphism).

On the other hand (5) is equivalent to

(50 VrC0)^(w')=(-l)' l/ ^0/>K0) ,

and then

0(w f;)5'Cw' v')=<p(uWv)<p(u')W) (by (3))

=( l)i
e/
<p(u)<p(ti'rf(vW(v') (by (50)

which proves our assertion (6).

After having constructed a homomorphism 0: C^ Cp-> Cjt/,

we next construct a homomorphism of the inverse direction X : CA, >

CH^CP. First define a linear mapping X : M N+P >C/v C/> by

(7 ) X (Ar+^)^7TAKA;) 1+1 7rP(>;) (xeN, yeP),

where 1 is the unit in Cp or Cv. CM CP being an algebra, we

have

D2-K1

and since TTN(X) e (C^)-, TTP(^) 6 (C/0-, the last two terms cancel

out with each other by (4). Also

(TTjvC*) iy==(7TN(xW I=/(A:) (1 1) ,

and similarly (1 7rp(y))
2

/(^)(1 1), then we have
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(Xo(*+jO)=/(*) (1 D+/OO (1 1)

=/(*+*) (101) (by (1)),

i. e., we obtain

(8) (Xa(2)) 2-/(z) (1 D=0 , (z e M) .

X is extended to a homomorphism X : TA/~>Cjv Cp and clas-

sifying by $M> ^o defines at last a homomorphism X : CM~*CN g) C/*

satisfying

(9) X(7TM(2))=X (2) for all 2 eM,

because of (8).

We remark that

(10) 0(7rjvK*) l)=^C7r7v(^))^(l)=7TM(^U)) . 1=7^00

by (3). Now we have by (9), (7) and (10),

X o 0(7T,VGO l)=X(7rJkf(^))=Xo(A:)=7r//U) 1
,

and similarly X o 0(1 7Tp( >y))=l 7Tp(y). But since C^(g)Cpia

generated by TT V(A:) 1 and 1 Trp(^), the homomorphism X o is

the identity on CAT C>. On the other hand, we have by (9), (7>

and (10)

ff X(7TAf(*+^))^^(Xa(A:+j))-:(9(7r^(A:)

and since TrA/Ctf-f-30's generate CA/, the homomorphism o x is also-

the identity on CM. Hence CA/ and Cw0Cp are isomorphic with

each other, which proves our theorem.

3. When A is a field 7f of characteristic =4= 2, and M is of

dimension 1! over K, it is well known that / is represented in a form,

(a, beK),

by a suitable choice of a base x,y. If we put N=K-x, PK-y,
x and y are orthogonal, since / does not contains the term gtj.

Therefore we have C^C^ Cp, and since N or P is generated by

only one element # or y respectively, the consideration in 1 gives,

now

CN=K+Kx, CP=K+Kv
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Thus we obtain

(K+Ky)=K+K0 Ky+Kx & K+Kx Ky .

which proves that CM is spanned by four elements 1 01=1, 1 0^,

#01, and xy. The products between these basic elements are

iven by the following :

(x iy=x2 l=f(x) - \^a 1
,

(* 1) (1 jO=* 0y=-(l &y) (* 1) ,

(since both #01 and 1 0;y are of degree 1).

Putting #01 X, 10;y~F, we have x0y=XY, and the products

are given by

Xz=a, Y2=b, XY^-YX.

This is nothing but a generalized quaternion algebra over K. In

the case where <z b= 1 and K is the real number field, this is the

ordinary quaternion algebra of Hamilton.

4. Suppose that M has a base consisting of a finite number of

elements (#!,,#) which are mutually orthogonal:

It is well known in the theory of quadratic forms, that when A is a

field of characteristic 4= 2, we can always take such a base.2)

THEOREM 3.4. Under such assumptions, M is identified with the

submodule 7r(M) of the Clifford algebra CM over M. Also CM is

spanned by the elements Xi l #/;, C/i<< /A).

PROOF. Since this is proved when n I in 1, we proceed by

induction of n, and assume that this statement has already been

proved for n 1. Put N^Axi + ^+Axn-i, and P=Axn \ N and P
satisfy the assumptions of Theorem 3.3, so we have C^^C^Cp.
Under this isomorphism, Tr^O-hjy) corresponds to TTAT( x) 1 + 1

irpty), (xeN,yeP). The assumption of the induction asserts the

identification of x with TTN(X) and y with TTpCjy). Also x0 1+ 1 0y

2) In the cass of characteristic 2, such a bass exists only in the trivial

case where the quadratic form f(x) is the square of a linear form.
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being if and only if xy~ 0, the correspondence MB (x+y)-*x) 1

4-1 0y 7rM(x+y) is an isomorphism. Thus M may be identified

with Tr^CAf). Next by our assumption of induction, C^ is spanned

by the elements Xj\ Xjk (ji<-~<jk <: nl) and Cp is generated by

Xn and 1. Therefore the tensor product of two modules CV and

CP is spanned by the elements Xj\
-
Xjk (j\ < <jk ^n 1) and

Xj l Xjk xn , i. e., by Xi l --Xih (i\ < < ih ^ n\ which proves our as-

sertion.

5. In particular when M has a finite base xlt ,xnt A is a field

of characteristic 4= 2 and / 0, the exterior algebra E over M is

spanned by 2n elements xi
l ~'Xih (i\<< r&). /? is not only semi-

graded, but also graded, and if we denote by E--^ Em the decom-
m

position into homogeneous components, Em is spanned by the products

of m elements xi
l Xim(*i < < ^m). Since xx~Q and xy=yx (x,y

M), we have Em=0 if #z > w, and J^M is spanned by only one

element x\ ---Xn. This proves that Em is determined uniquely by M
itself and does not depend upon the special choice of a base Xi,--,

xn . Therefore if we take another finite^ base (y\, t yp) of M, we

have p= n, i. e., the number of the elements of the base is invariant.

4. Canonical anti-automorphism. The notations A, M,f, /3, T,

{, C 7yg=C++C-, TT are all as before.

LEMMA 3.2. To every linear mapping X : M-*A, there exists a

derivation dK in C of degree odd., i.

cC-, and JA(C_) cuC^, which satisfies

(1) dx(7r(*))=AG0 . 1 /or AT 6 M,
I x
i ii

IMJ i / i TT ;ana A -->T-->C
(2) dj=0.

PROOF. Since X may be considered as a linear mapping X : Ti~>

TO, there exists a derivation Sx in T of degree ~1 which extends X,

as we have proved in the previous chapter. We have

*-/(*) 1)=SX(^ A:) (since Sx(l)= 0)

3) If AT has a finite base Xi,---,xn ,
this property holds if we delete the

word "
finite

"
for the base (y).
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=S*(*) 3 xx g> 8XO) (8X is of degree -1)

hence SX(E)=0. Therefore A defines a derivation dx of C, which

satisfies the condition (I). Also 8A2 is again a derivation since

8X is of odd degree, and we have

which proves (2).

Now, if to an element #(=f= 0) of M, there is a linear mapping

X: M->A such that X(#)=rO, we obtain dx(7r(#)) =4=0 and then TT(JC)

4= 0. When ^4 is a field, every element #(4= 0) of M satisfies this

condition, and we obtain

COROLLARY. // A is a field, TT : M-*TT(M) d C is an isomorphism,

and tve may identify M with 7r(M) in C.

Canonical anti-automorphism. Hereafter we assume that TT :

M-+7r(M) cz C is an isomorphism. The above corollary asserts that

this assumption holds when A is a field.

THEOREM 3.5. There is an anti-automorphism on C of order 2 r

*. e., a mapping u-*!t satisfying uv=vli, tvhich leaves the elements of

M fixed.

This mapping is called the canonical (or main) anti-automor-

phism of C.

PROOF. Let C be the
"
opposite

"
of C, i. e., C' be a linear space

with the same structure of ^[-module as C, and has a multiplication

uxv=vu(u,veC). If xeM, we have xxx /(#)* 1=xx~/O) 1

and then the injection of M-*MC C1 is extended to a homomorphism

C B u-+Ti e C by the universality of the tensor algebra. This homo-

morphism is linear and satisfies

(3) m)

and also x=x, for xeM. Taking the mapping
~~~

again on (3), we

have Wv vu=W which proves that U-+TI is a homomorphism of

C-*C. By x'x (#eM), u-*ft (ueC) is the identity, and then u-+u

is an involution. Hence u ni is an isomorphism of C onto C', i. e.,

an anti-automorphism of C.
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If #1, X2,---,Xh 6 M, we have

(4) *i#2 " #/i *A *2#l=#A #2*1

When /=0 (the case of exterior algebra), we can interchange

the right hand side of (4) by the anti-commutativity xyyx, and

then we obtain

(40 *r*r^=(-iy*~ i)+(*~ 2)+>~ +2+i
*i*2 XH

=z(-wh-i)/2 XlX2
. Xh

Now, since Eh is spanned by the elements x^ Xjh ,
we have

(5) ^(_iy*/i-])/2 u for all ueEn.

In the case of exterior algebra, (5) is taken as the definition of the

canonical anti-automorphism u. We can prove directly that u-+u

defined by (5) satisfies the conditions of the canonical anti-automor-

phism, using the property:

uv(1)hkvu 9 for ueEh, veEk.

5. Derivations in the exterior algebras ; Trace. In the case

of an exterior algebra, we have the decomposition into homogeneous

components T S TH, =S Eh in the Z-gradation.
h h

LEMMA. 3.3. If a linear mapping <p : M*Eh is given by a linear

mapping ^ : M+Th, and the canonical mapping TT : Th-*Eh, we have

a derivation d of degree h1, which extends (p. d is uniquely

determined

The above condition on <p is always satisfied when M is a free

module, or when A is a field, or when h= 1 since T\E\.

PROOF. The uniqueness follows from the fact that the derivation

is determined uniquely by its effect on the generators.

We shall prove the existence. Since M c 7\, we can take a

derivation 8 in T of degree h1 which extends \, by the consider-

ations in the previous chapter. We have

(1) S(* *)=SGO x+ (-1)*- 1 x 800

and operating TT on (1), we obtain



44 CERTAIN IMPORTANT ALGEBRAS

since q>(x)eEh, xeE^, and TT(X)=X for #eAf. Thus the ideal (?

generated by x x (x e M) in T belongs to the kernel of TT, and then

defines a derivation d of E, which extends <p.

7T

COROLLARY. Any endomorphism M-+M=Ei is extended to a

uniquely determined derivatin of degree in E.

Now let SCAT) be the set of all endomorphisms of M. (M) is

again a module over the basic ring A, and indeed it is also an

algebra. For every element y>e%(M), we have a derivation dv of

degree by the above corollary.

LEMMA 3.4. d<? depends linearly on <p, i. e.,

(2) dav+to'=ad<p +bd<p> (a,beA;<p, </>' e ??(M)) .

and for the "bracket operation'
1

^>,q>'~\~<py>
f

(p'q>, d9 satisfies

(3) dTjp9 <p'i
=

^jd(p J d<p^(d(pd(p' dy'd^)

PROOF. Since (2) is proved similarly, we shall prove (3). The

right hand side of (3) is again a derivation of E, since d<p is of

degree 0, it is sufficient to prove that both sides of (3) coincide with

each other on the generator M of E. In fact, for x e M, we have

which proves our assertion.

Now we assume that En is a free module of rank 1 for some

integer n, and "/={()} if n1 > n. For example, this property holds

if M is a free module with a base of n elements, i. e., when M is

an w-dimensional vector space over A. Let be a generator of En ;

En~A . Since dv maps En into En ,
we have
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where s? is a uniquely determined element of A, which does not

depend upon the special choice of .

DEFINITION 3.4. s<p zs called the trace of the endomorphism q>

and is denoted by s<? Tr q>.

LEMMA 3.5. Tr </y is linear in ^M) and

(4) Tr <(/ Tr cp'cp .

PROOF. The former is evident from (2). For the latter, we

have by definition,

d<p d<p'=

and similarly

But since we have assumed that A is commutative, we obtain

Scp S<pt S(p?S<p j

and therefore we have

which proves (4).

REMARK. By (4) we have, for example,

Tr <pcp
f

g>
n=Tr <//

r

^?^'=T

But an expression like Tr g>qSy>'
f Tr <p

f

(pcp
n is false in general.

Also Tr q> is not a homomorphism ^(M) >A.

When M is an ^-dimensional vector space with a base (#1, -,#,,),

any element cp of 3(M; is represented by a square matrix (#/,) of

order n, such that

We shall show that the Tr q> defined above coincides with the clas-

sical one defined by the sum of the diagonal elements of a matrix.

In our present case we have En~Axi #, so we may take

#!" *n- Then
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W
i

/
^

\

iLjXi'-Xk i f Xj tfiA#i }Xk*-l~-Xn ,

since </<? is of degree 0. But, since xux=zxxu=Q 9
for xeM,

we have

_

which proves that

i.e., Tr </; an+tf22+ +ann .

Our definition of the trace seems to be intrinsic ;
it is evident

from our definition that Tr <p is determined only by </; and does not

depend upon the special choice of a base.

6. Orthogonal groups and spinors. Let K be a field of

characteristic p(s>0), and V a finite dimensional vector space over

K. Also let / be a quadratic form on V, (3 the associated bilinear

form. We assume that ft is non-degenerate, i.e., /?C,r,^ ) lor all

xeV, implies yQ 0. We denote by C the Clifford algebra associated

to / over V.

DEFINITION 3.5. An automorphism s of V is said to be orthogonal

associated to /, if s leaves f invariant, i. e.,

f(sx)=f(x) for all xeV.

We use the terminology
"
orthogonal transformation

"
instead of

"
orthogonal automorphism ". The set of all orthogonal transforma-

tions forms a group which is called the orthogonal group of / and

denoted by O(f).

DEFINITION 3.6. The set F of ue C, such that it has an inverse

tr l and

uVtr 1 c:V, i. e., uxir 1 s V for all xeV,

forms a group, ivhtch is called the Clifford group of f.
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If u belongs to the Clifford group JT of /, Su(x)=uxu" 1 is an

orthogonal transformation, because

Hence the correspondence X : u-*su is a linear representation of F,

which is called the vector representation of F. The kernel of this

representation is the set of invertible elements in the center of C.

If s is an automorphism of V, it is represented by a matrix and

we have the determinant of s. If 5 is orthogonal, we have det s

1. The set

(seO(/)| det s=l}

forms a subgroup of O(/), which is of index 2 unless the charac-

teristic p of K is 2. When p=2, we have det s=l for all 5 e Off).

Let CC++C- be the homogeneous decomposition of C in the

semi-graded structure and we put F+~F fl C+. We define O h
(/)

as follows :

If J>4>2,
+(/)={seO(/)l det s=l},

(1)

If =2,

Here we can prove that in both cas?s, {%O)I we/ T+
} coincide

with O+(/), tffld #+
(/) 15 subgroup of O(f) with index 2.

Let ->77 be the canonical anti-automorphism given in 4. We
can prove that ~uu e K 1 /br ^^ry ueI J+

. Putting =\(/)-l, X

is a homomorphism F-+K*, where K* is the multiplicative group of

non-zero elements in K. The kernel /V of this homomorphism X

is called the reduced Clifford group. Also we denote by & the

image of /V under the vector representation %, and call it the

reduced orthogonal group.

When K is SR, the real number field, and /W=

+ f (positive definite), O+
(/) is the ordinary special orthogonal

group. It is well known that O f
(/) is not simply connected if

n iS 3
;
the Poincare group of O +

(f) is actually of order 2 when n ^> 3.

Also we have J2=0+
(/) and /V^^O+C/) is a covering mapping.
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We now return to the general case. A linear subspace W of V
is called totally singular if the restriction of the quadratic form on

W is the zero quadratic form over W. All maximal totally singular

subspaces of F'have the same dimension, and the common dimension

is called the index of /. It is evident that / is of index if and only

if there is no x 4= with /(#) 0. Here we have the following

results :

If the index of f is not 0, ive have

(2) O +
(/)/ ^ A"*/(/f*) 2

.
4 >

Q is the commutator subgroup of O(f) except tvhcn K has only

tiuo elements, dim V=& and f is of index 2. If furthermore n~
dim F^>3, is the commutator subgroup of #+(/). Also when

w~dim F 2, O +
C/) is abelian

y
and its commutator group consists

only of {c}.

On the other hand, the structure of Q when the index of / is

is quite unknown.

Now we assume that V is of even dimension, namely 2n, and

let Xi,--,Xn,yi,'~,yn be the base of V. Suppose that /can be reduced

to the following form :

(3) f(^ ,'*.+ TW)=2] w .

When K is algebraically closed, every quadratic form whose ft is

non-degenerate can be reduced to this form. On the contrary, if K
is not algebraically closed, such reduction is not always possible, as

will be shown by an example of f
2
+?7 ? over the real number field.

Under these assumptions, the Clifford algebra C is isomorphic to a

full matric algebra and has the dimension 22w
, while C+ is of

dimension 2W . There is a minimal left ideal 91 in C, of dimension

2n . For ueC, we have f e9l->we9l and then the transformation

XK : f *w is a representation of C. A,M induces a representation over

/ T+ (d C), and is an isomorphic representation on r +
. This is called

the spin representation of F+, and the elements of S
3t are called

spinors.

4) K* means the multiplicative group of elements =j=0 *n K.
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The origin of this name is as follows. When E. Cartan classified

the simple representations of all simple Lie algebras, he discovered

a new representation of the orthogonal Lie algebra. But he dit not

give a specific name to it, and far later, he called the elements on

which this new representation operates spinors, generalizing the

terminology adopted by the physicists in a special case for the

rotational group of the three dimensional space.

The spin representation of F is simple except when K has only

two elements, ?r~l and / is of index 1. Also the spin representation

of r +
is either simple or the sum of two simple representations.

We may assume further that 91 is homogeneous in the semi-

graded structure of C, i. e.,

(4) 9l=9U+9l- , where 9l=9l fl C .

This corresponds to the decomposition of the spin representation

into two irreducible ones, and each of them is called the half spin

representation. Each half spin representation is of degree 2n
~

1
.

When n > 2, the kernel of each half spin representation is of

order 1 or 2. On the contrary, if n 2, i. e., if V is of dimension 4, it

is not so. This corresponds to the fact that the rotational group of

dimension 4 is not simple. When n2, let A\, A2 be the kernels of

the two half spin representations of /V ;
we have

/V=^i'^2 (direct product),

and the spin representation of /V splits into two parts. One of

them operates on 91+ and leaves invariant 91-, while the other operates

on 91- and fixes 91+ . Moreover the covering group of the orthogonal

group splits into the product of two subgroups. The representation

\u (ue A\) produces all automorphisms of determinant 1 on 91+, and

then each of A\ and A2 is isomorphic to the multiplicative group of

2-2-matrices of determinant 1.

Now let /V + be the reduced Clifford group of a quadratic form

in 3 variables. We have /y+ c/V, and /y+ is imbedded into both

A\ and A2 . Also /V +
~*^i is an isomorphism onto. The Clifford

group which covers the orthogonal group is isomorphic to A\, and
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this corresponds to the D-part of spinors so called by the physicists.

When K is 5R, the real number field, a quadratic form cannot

always be written in the form (3) as we have remarked above. But

if we extend K to the complex number field, the representation as

(3) is possible, and the real quadratic form / is extended to a

Hermitian form, while the representation FQ'+^JI is given by a

unitary matrix. This may be an answer to the question why the

spinors are treated on the complex number field.



CHAPTER IV. SOME APPLICATIONS OF
EXTERIOR ALGEBRAS.

1. Pliicker coordinates. Let K be a field, V a finite ~

dimensional vector space over K, and E the exterior algebra

over V. The decomposition into homogeneous components of E is

denoted by E^Em - If Xi,,xn is the base of V, the
( )

elements
m \^n '

Xi 1 Ximdi< <im) form a base of Em .

DEFINITION 4 1. An element a of Em is called decomposable if

a is the product of m elements of V.

Any element in Em is the sum of a finite number of decom-

posable elements. We remark that aa=0 if a is decomposable.

Let W be an m-dimensional linear subspace of V with a base

yi,-~,ym. By the canonical mapping of W into V
t

the exterior

algebra F of W is naturally isomorphic to the subalgebra of E
generated by W, and the homogeneous component Fm of degree m
in F is therefore in Em . On the other hand, Fm is of dimension 1,

spanned by yi~-ym Thus to any linear subspace W in V of dimension

m, there corresponds a 1-dimensional subspace of Em , namely Fm.

Conversely, if Fm is a 1-dimensional subspace of Em spanned by

a decomposable element, we have an ^-dimensional linear subspace

W, such that the homogeneous component of degree m of the

exterior algebra over W is Fm . Also we have xFmQ, if and only

if xe W. In fact, let yi, ,ym be a base of W. If xe W, we may

take x=y\, and by FmK{y^-ym } we have xyi--'ym=Q, and then

xFtn0- Conversely, if x$W, the m+l elements x, yi, ,ym being

linearly independent, they are part of the base of V, which proves

xyi'- ym 4= 0. Also we have

THEOREM 4.1. The elements Xi,---,xm of V are linearly independ-

ent if and only if x^-Xm 4= in E.

Also the family of all w-dimensional linear subspaces of Vt and

the family of 1-dimensional subspaces of Em which are spanned by

51
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decomposable elements, correspond in a one-to-one manner with each

other. If we take a base (#i,...,#w ) of V, we have

yr~ym=. S tf *i , *,-i -*, or,-, .-. e /T

*!<<',

for a base yi 9 ,ym of W. The ratios of various
oCiV-i^'s

are

invariant if we take another base y]?,~-,y/ii of W, since y\ym is

a base of F//I.

DEFINITION 4.2. These ratios of ai l -im 's are called the Plucker

coordinates of W.

Since the base of Fm is decomposable, the Pliicker coordinates

can not freely be chosen, but must satisfy some identities. For

example, if w=4 and m=2, the identity reads:

2. Exponential mapping. Let F be a vector space (not

necessarily finite dimensional) over the field A", and E be the ex-

terior algebra of V. We shall define the exponential mapping in E.

The ordinary exponential function is defined by the power series

v2 yM
(1) exp#=l + #+-*r + "4-

-^j-
+ .

For xeE, we may consider the multiplication in E for x2
,x\~-, and

if # is a homogeneous element of degree > 0, we have xtn=Q for

sufficiently large wz. But it will cause a difficulty to define exp x

by (1), because of the factor -
p , unless the characteristic of K is

0. So, we shall proceed in another way. If x is decomposable, we

have #2=0 and then exp x may be defined simply by l+#. If we

restrict ourselves to elements a, b,-~ of even degree, we have the

commutativity ab=ba, and we may expect the " addition theorem
"

of exponential function:

(2) exp (tf-f6)=(exp a) (exp b) .

Hence exp x may be defined through decomposing x into a sum of

decomposable elements. However, in order to assert the uniqueness

of this definition, we shall begin with proving some lemmas.
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LEMMA 4.1. If x e Eh, h ^> 1, x 4= 0, //W?TZ //r0 ;ns /z derivations

di,-~, dh of degree -1 such that didh(x) 4=0.

Since K is a field, we may say that di dk(x)=l in multiplying

by a suitable scalar.

PROOF. Let (yi)iei be a base of V; introduce a relation of

linear order into /. A binary relation like i^ < /v means always the

relation with respect to this order. Since the elements y^ l yih (i\ <

< ih) form a base of Eh, we can write

(3) x~

Since #40, there is at least a sequence of indices (/i, , //,) such

that a(/i, ,?/!) 4=0. Now for each v 1, , /^, there exists a linear

function Xv in F such that

(4) Xv Cj/
Jv
)=1 and XVC^,0=0 for all j 4 s ^ .

By the extension theorem, there is a derivation dv of degree 1 which

extends X,. We have by the definition of the derivation,

But (4) shows that dv(yi)=AV(J'I) 4= only if /~/v ,
and then we

obtain

<AX:vii yih ) rrr0 if ^ $ (*i, , &} ,

When /V G{/I, ,//z), namely v~zV, we have

where the symbol A above j/r
means that this factor should be

omitted from the product. Then we have

where the summation is taken over the family of indices such that

*i <-<&, ^e{i"i, -,14}.

By successive applications of t/v ,
we have

d\
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-since the terms in the right hand side of (3) vanish unless (*i, ,/&)

contains all ii, ,*. This proves our assertion since we have as-

sumed that

LEMMA 4.2. An element x$E has the property that d(x^=Q for

-every homogeneous derivation d of degree 1 of E, if and only if

PROOF. It is evident that xeE implies d(x)=Q for every

derivation d of degree 1. For the converse, we shall prove the

contraposition, i. e., the proposition that if x $ EQ ,
then there exists a

derivation of degree 1 such that d(x} 4= 0. Let x=^x/t be the
h

homogeneous decomposition of x. Since x $ EQ ,
we have an integer

h^il such that Xi='~=Xh-i=Q, #A H= 0. By the above Lemma 4.1,

we have a derivation d of degree 1, such that d(xh) 4= 0. Since

^/(# )~0, and d(x)=d(Xh)+d(Xh+\)-^ is the homogeneous decom-

position of d(x), we have d(x) 4= from d(Xh) 4= 0, which proves our

statement.

LEMMA 4.3. If a is decomposable of degree >. 2, and d is a

derivation of degree 1, we have ad(a)=0.

PROOF. Putting a=-xb, where xe V and b is again a decomposable

element of degree 2>1, we have d(a)=d(x}bxd(b), and then

since xt=0, bbQ.

If the degree of a is even and the characteristic of K is not 2,

this lemma can also be proved from d(aa)=0.

LEMMA 4.4. Let a\ y -",ak be decomposable elements of strictly

positive even degree, such that a\-\
-----h^=0. Then we have

PROOF. We first remark that the case of m~2 is easily proved

unless the characteristic of K is 2. In fact, we have #,-
2=0, and

ataj~ajai, because the afs are decomposable elements of even

degree. Hence we obtain
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and then the constant factor 2 can be removed, provided that the

characteristic is not 2.

But we shall give a demonstration which is valid in the general

cases. Putting

it is sufficient to show that c/(^) for every derivation d of degree

1 by Lemma 42. Since 0j's are all of even degree, they are com-

mutative with any element in E. Thus we have

- v

But since ^ ^(a,0 ^(2^i) by our assumption, and

by Lemma 4.3, we have d(u)=Q which proves our statement.

Now we shall give the definition of the exponential mapping on

the space F of elements whose degrees are even:

First we define exp a=-1+ a if a is decomposable. For any ele-

ment it e F, it is possible in at least one way to represent u in the

form ua\-\-----h# where each ai is decomposable and of even

degree, because each E2h has a base consisting of decomposable

elements. Then we define

(6) exp e*=(l+0i) (1+02)
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While the representation u~a\-\-----Va^ by decomposable elements is

not unique, exp u is determined uniquely by u. Precisely speaking,

if we represent u in two manners

where #, and bj are decomposable, we have

In fact, putting ak+i~bi, ..,ak +ibi, we have ai+a2 -\
-----

where ai,... t ak+t are all decomposable. Then we have by Lemma

4.4 that

(5) S *M-^=0.

The expression (l+0i) (l+02 ) (!+#*+/) is expanded by the "poly-

nomial theorem
"

since 0,-'s are mutually commutative, and all terms

except 1 vanish because of (5). Thus we obtain,

(8)

On the other hand we have (!+#/) (1 #/)= 1 / 1, since y is

decomposable. Multiplying (l-f#i) (1-f #2) (!+&/) to both sides of

(8), we have (7), since #,, bj are mutually commutative.

DEFINITION 4.3. The mapping u* exp u defined above is called

the exponential mapping of F-+E.

It is evident from the definition that exp u satisfies

(20 exp (*+&)=(exp a) (exp b) (a, beF).

In particular when V is a finite dimensional vector space, whose

dimension is even, namely 2m, we take a base y\,---,yim. Let F be

a homogeneous element of degree 2. The homogeneous component

of degree 2 of exp F is a multiple of y^ y2m , namely

(exp D 2m=Pr (3>i
' * y2m ) , Pr e -ff" .

DEFINITION 4.4. /> is called the Pfaffian ofFe E2 -

If jT is represented by a sum of m decomposable elements^ of

1) This condition can be proved to be satisfied by the theory of skew-

symmetric forms, but here we assume this property.
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degree 2, putting F #H Ham ,
we have

exp Jr=(l+ 0i).(l-f<7W ),

and expanding the right hand side by polynomial theorem, the term

of degree 2m is merely a\ a^. On the other hand, using the

polynomial theorem for rm=(a\-\ \-am )
m

, and noting that ^2=0,

we have Fm m\ a\- am, which proves

(9) ml (exp r) 2m=rm .

If the characteristic of K is or relatively prime to m !, we obtain

(90 (exp r^2m-rm/m\.

3. Determinants. Let V be a finite ^-dimensional vector space

over K. An endomorphism 5 of V is extended uniquely to a homo-

morphism Ss of E-+E, which is homogeneous of degree 0. Since En

is of dimension 1 and Ss(En ) a Eny there exists a uniquely deter-

mined scalar As such that

(1) Saz=Jsz for zeEn .

DEFINITION 4.5. This As is called the determinant of the endo-

morphism s and denoted by Js
~det s.

The properties of determinant are easily proved from this

definition. For example, we shall show

THEOREM 4.2. 1 (det s) (det s')=det (s o s').

2. det s 4= if and only if s is an automorphism of V.

PROOF. 1. Let 5, s' be two endomorphisms of V. Ss 5S
/ is a

homomorphism of E-*E which coincide with Ss . s ? in V, and thus

we have SsSs/=SS o S/. Therefore, for zeEn ,
we obtain

JS o S>2==SS o s/2^Ss
o SS/2=5S(J,/)=JS/(SS2)=JS/JS2,

which proves our assertion, since we have assumed that K is com-

mutative.

2. If (#1, ,#) is a base of V, En is spanned by Xf-Xn, and

we have

(2) AU-JKl.)=5,C^-*i)
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since S$ is a homomorphism. Therefore by Theorem 4.1, det s~0 if

and only if s(xi)-~s(x) are linearly dependent, and then it is

equivalent to the fact that 5 is not an automorphism of V.

Now, if we write

we have

But ^ Xin =Q if there exists a pair of indices such that tn~i

O4=i/), and when the 0\, ,/n ) are all distinct, we have Xi l *in
~

sgn (/i, , *fi)C#i #), where sgn (*i, ,/) is 4-1 or 1 according as

(i"i, , /) is an even or odd permutation of (!,,). Thus we

obtain

which proves that

(3) det 5=det (fly,0=S sgn (fb -, /) a
f

.a ainn ,

where the summation is taken in all the sets 0"i, ,/) such that

/i, ,/ are all distinct. This shows that det s may be expressed as

a polynomial with the coefficients 1 in the ctji's.

Now, let U be a vector space of 2n dimensions over K\ we

assume that U is given by the direct sum of two n dimensional

linear subspaces V and W: U=V+W. Let (#1, -,*), (j>i, ,^w) be

the bases of V and W respectively. Taking together with #|-'s and

jv's, they form a base of U. We define a bilinear form @(x,y) on

/x U in setting

(4) /8U-,^)=^C^i,^)=0, 0te,yj)=Sij (/,/=l f-,),

then /3 is a symmetric non-degenerate bilinear form on t/x 7,

satisfying (K, F)=/9(T^, W)=0.

The set of all linear functionate over V is again an ^-dimensional

vector space over K which is called the dual space of V and denoted
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by V*. In our present case, to any y e Wt
the functional over V

defined by

(5) \y(x)=ff(x,y) for xeV,

is linear, and belongs to F*. Since X^O,) S,v/, the mapping X:

y-+\y is a linear isomorphism of W onto V*. Therefore we may

identify W and F* with each other.

If s is an automorphism of V, we can define an automorphism

<s of F* by

We have easily (/s)" 1 '(s" 1
) and this automorphism of F* is denoted

by s. Since F* is identified with W, s is also an automorphism of

W. Then there exists an automorphism Ss of U which coincides

with s on F and s on W respectively. We shall prove the following :

THEOREM 4.3. We have det Ss=l.

We first prove the following:

LEMMA 4.5. We put

tvhich is an element of degree 2 in the tensor algebra over U. S5

extends to an automorphism of the tensor algebra over U, and this

extended automorphism leaves 9 fixed.

Proof of Lemma 4.5. What we have to prove is the identity

(6)
1-1 1-1

Since we have identified V* with W, putting

A-l

we have by (4) and (5)

This implies
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(7) 'sy*=

which proves that the matrix corresponding to 's is the transposed

matrix of the automorphism 5. Applying s on (7), we have

and then

kixk sy^V! (
xk ^

i-l it k k-l\ i-l

which proves (6).

Now we return to the proof of det Ss~l. Since the exterior

algebra EU over U was defined by the canonical image of the tensor

algebra over U (see 2, Chap. Ill), we denote the canonical image

of Q in EU by F. F is represented by

r=<uw .

i-l

By Lemma 4.5, the automorphism ^2) of EU which extends Ss leaves

F fixed. Then ^ leaves (exp F) invariant, because the exponential

mapping is defined intrisically in the exterior algebra. More pre-

cisely, since x&i and ^(jCj<yi)==sCKi)S( <yiO are decomposable, we have

exp /f

=(

Hence ^ leaves also invariant the component (exp F^n of the

highest dimension of exp F. On the other hand, /' being the sum

of n decomposable elements, we have

(exp D2n=x\y\xiyr~ Xnyn ,

as we remarked at the end of 2, and it is a basic element =h in

Therefore we have by the definition of the determinant

2) Read "so".
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(det 5

which proves det S3
~

1.

THEOREM 4.4. Let U, V, W be as before. If s is an automorphism

of U, which leaves V and W fixed, and if we denote by Sy, s\v the

contractions of s into V and W respectively, then

det 5 (det sy) (det sw) .

PROOF. This theorem follows from Ey^Ey EW, but we shall

give a simpler demonstration. Let (#1, , #), (yi, -,3>n) be bases of

V and W respectively. We denote by ^ the automorphism of EU
which extends s. By the definition of the determinant, we have

(#! xn)= (det sv)(xi'-xn )

since Ev is generated by xi,~ y xn in /tj/ and ^(Ev)dEy. Similarly

we have

and then

(det s) (#1 *j, yi
- yn)=^.(xi xn yi~-

= ^(xi- xn^(yr~yn}^(detsvHxr - xn ^) (det

=(det SK) (det 5pr) Ur- ^w yi'-yn) ,

which proves our statement.

COROLLARY. The determinant of a matrix s is equal to the deter-

minant of its transposed one : det 's det s.

PROOF. The automorphism Ss of U which coincides with s and

s on V and W respectively satisfies the conditions of Theorem 4.4.

Then we have, from two theorems given above, that

(det s) (det s)~det Ss^l .

On the other hand (det 5) (det 's)=l, because of S= ('s)- 1
,
which

proves our assertion.

4. An application to combinatorial topology. As an applica-

tion of the theory of exterior algebra, we shall give a demonstration

of a fundamental property in the theory of combinatorial topology :
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that the boundary of a boundary is 0.

We are now dealing with the combinatorial topology, and take

all vertices P<. In the singular homology theory, all points in the

space are the {P*}. We construct a vector space V of which the

P**s form its base. Any element of V is a 0-dimensional chain in

the homology theory. Now a simplex a is ordinarily defined as a

set of a finite number of /Vs : cr^CP^ ,"*,P*A ) with an orientation

which makes <r skew-symmetric symbol. This law of orientation is

quite the same one as in the exterior algebra ;
it is appropriate to

represent the simplex <r=(prtl , ,Pah ) by the element Pai
- P<*h in

the exterior algebra Ev over V. A ^-dimensional simplex is of

degree p + 1 in Ey. Next we define the boundary operation. There

exists a linear mapping 8 on V such that SP* 1 for all a. Then

we have a derivation d of degree 1 which extends S. If we apply

d to a simplex o-^CP^ , ,P*A ), we have

This expression coincides with the ordinary definition of the bound-

ary operation. So, we define the boundary operation by d. Then d

being a derivation of odd degree, d2 is again a derivation and the

property

proves d2 0. Hence the boundary of a boundary is 0.

Although there are many other interesting applications of the

exterior algebras, we omit them because of the restriction of time.

We only mention an application to physics ; the equaions of Maxwell

in the theory of electro-magnetism may be represented elegantly

using the forms of exterior algebra.3)

3) See Erich Kahler, Bemerkungen iiber die Maxwellschen Gleichungen,

Hamburg Abhandlungen, 12 (1938), pp. 1-28.
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